TSTP Solution File: SWV426^2 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : SWV426^2 : TPTP v8.1.2. Released v3.6.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 21:51:24 EDT 2023

% Result   : Theorem 0.20s 0.54s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.13  % Problem    : SWV426^2 : TPTP v8.1.2. Released v3.6.0.
% 0.07/0.14  % Command    : do_cvc5 %s %d
% 0.13/0.35  % Computer : n013.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit   : 300
% 0.13/0.35  % WCLimit    : 300
% 0.13/0.35  % DateTime   : Tue Aug 29 07:23:47 EDT 2023
% 0.13/0.35  % CPUTime    : 
% 0.20/0.48  %----Proving TH0
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  % File     : SWV426^2 : TPTP v8.1.2. Released v3.6.0.
% 0.20/0.49  % Domain   : Software Verification (Security)
% 0.20/0.49  % Problem  : ICL logic mapping to modal logic implies 'cuc'
% 0.20/0.49  % Version  : [Ben08] axioms : Augmented.
% 0.20/0.49  % English  :
% 0.20/0.49  
% 0.20/0.49  % Refs     : [GA08]  Garg & Abadi (2008), A Modal Deconstruction of Access
% 0.20/0.49  %          : [Ben08] Benzmueller (2008), Automating Access Control Logics i
% 0.20/0.49  %          : [BP09]  Benzmueller & Paulson (2009), Exploring Properties of
% 0.20/0.49  % Source   : [Ben08]
% 0.20/0.49  % Names    :
% 0.20/0.49  
% 0.20/0.49  % Status   : Theorem
% 0.20/0.49  % Rating   : 0.23 v8.1.0, 0.18 v7.5.0, 0.29 v7.4.0, 0.44 v7.3.0, 0.56 v7.2.0, 0.50 v7.0.0, 0.43 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.71 v6.1.0, 0.57 v6.0.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.33 v4.0.0, 0.67 v3.7.0
% 0.20/0.49  % Syntax   : Number of formulae    :   60 (  24 unt;  33 typ;  24 def)
% 0.20/0.49  %            Number of atoms       :  101 (  24 equ;   0 cnn)
% 0.20/0.49  %            Maximal formula atoms :   21 (   3 avg)
% 0.20/0.49  %            Number of connectives :   84 (   3   ~;   1   |;   2   &;  77   @)
% 0.20/0.49  %                                         (   0 <=>;   1  =>;   0  <=;   0 <~>)
% 0.20/0.49  %            Maximal formula depth :    8 (   2 avg)
% 0.20/0.49  %            Number of types       :    3 (   1 usr)
% 0.20/0.49  %            Number of type conns  :  127 ( 127   >;   0   *;   0   +;   0  <<)
% 0.20/0.49  %            Number of symbols     :   40 (  37 usr;   8 con; 0-3 aty)
% 0.20/0.49  %            Number of variables   :   49 (  39   ^;   6   !;   4   ?;  49   :)
% 0.20/0.49  % SPC      : TH0_THM_EQU_NAR
% 0.20/0.49  
% 0.20/0.49  % Comments : 
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----Include axioms of multi modal logic
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----Our possible worlds are are encoded as terms the type  $i;
% 0.20/0.49  %----Here is a constant for the current world:
% 0.20/0.49  thf(current_world,type,
% 0.20/0.49      current_world: $i ).
% 0.20/0.49  
% 0.20/0.49  %----Modal logic propositions are then becoming predicates of type ( $i> $o);
% 0.20/0.49  %----We introduce some atomic multi-modal logic propositions as constants of
% 0.20/0.49  %----type ( $i> $o):
% 0.20/0.49  thf(prop_a,type,
% 0.20/0.49      prop_a: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(prop_b,type,
% 0.20/0.49      prop_b: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(prop_c,type,
% 0.20/0.49      prop_c: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  %----The idea is that an atomic multi-modal logic proposition P (of type
% 0.20/0.49  %---- $i >  $o) holds at a world W (of type  $i) iff W is in P resp. (P @ W)
% 0.20/0.49  %----Now we define the multi-modal logic connectives by reducing them to set
% 0.20/0.49  %----operations
% 0.20/0.49  %----mfalse corresponds to emptyset (of type $i)
% 0.20/0.49  thf(mfalse_decl,type,
% 0.20/0.49      mfalse: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mfalse,definition,
% 0.20/0.49      ( mfalse
% 0.20/0.49      = ( ^ [X: $i] : $false ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mtrue corresponds to the universal set (of type $i)
% 0.20/0.49  thf(mtrue_decl,type,
% 0.20/0.49      mtrue: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mtrue,definition,
% 0.20/0.49      ( mtrue
% 0.20/0.49      = ( ^ [X: $i] : $true ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mnot corresponds to set complement
% 0.20/0.49  thf(mnot_decl,type,
% 0.20/0.49      mnot: ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mnot,definition,
% 0.20/0.49      ( mnot
% 0.20/0.49      = ( ^ [X: $i > $o,U: $i] :
% 0.20/0.49            ~ ( X @ U ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mor corresponds to set union
% 0.20/0.49  thf(mor_decl,type,
% 0.20/0.49      mor: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mor,definition,
% 0.20/0.49      ( mor
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.20/0.49            ( ( X @ U )
% 0.20/0.49            | ( Y @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mand corresponds to set intersection
% 0.20/0.49  thf(mand_decl,type,
% 0.20/0.49      mand: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mand,definition,
% 0.20/0.49      ( mand
% 0.20/0.49      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.20/0.49            ( ( X @ U )
% 0.20/0.49            & ( Y @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mimpl defined via mnot and mor
% 0.20/0.49  thf(mimpl_decl,type,
% 0.20/0.49      mimpl: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mimpl,definition,
% 0.20/0.49      ( mimpl
% 0.20/0.49      = ( ^ [U: $i > $o,V: $i > $o] : ( mor @ ( mnot @ U ) @ V ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----miff defined via mand and mimpl
% 0.20/0.49  thf(miff_decl,type,
% 0.20/0.49      miff: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(miff,definition,
% 0.20/0.49      ( miff
% 0.20/0.49      = ( ^ [U: $i > $o,V: $i > $o] : ( mand @ ( mimpl @ U @ V ) @ ( mimpl @ V @ U ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mbox
% 0.20/0.49  thf(mbox_decl,type,
% 0.20/0.49      mbox: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mbox,definition,
% 0.20/0.49      ( mbox
% 0.20/0.49      = ( ^ [R: $i > $i > $o,P: $i > $o,X: $i] :
% 0.20/0.49          ! [Y: $i] :
% 0.20/0.49            ( ( R @ X @ Y )
% 0.20/0.49           => ( P @ Y ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mdia
% 0.20/0.49  thf(mdia_decl,type,
% 0.20/0.49      mdia: ( $i > $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mdia,definition,
% 0.20/0.49      ( mdia
% 0.20/0.49      = ( ^ [R: $i > $i > $o,P: $i > $o,X: $i] :
% 0.20/0.49          ? [Y: $i] :
% 0.20/0.49            ( ( R @ X @ Y )
% 0.20/0.49            & ( P @ Y ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----For mall and mexists, i.e., first order modal logic, we declare a new
% 0.20/0.49  %----base type individuals
% 0.20/0.49  thf(individuals_decl,type,
% 0.20/0.49      individuals: $tType ).
% 0.20/0.49  
% 0.20/0.49  %----mall
% 0.20/0.49  thf(mall_decl,type,
% 0.20/0.49      mall: ( individuals > $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mall,definition,
% 0.20/0.49      ( mall
% 0.20/0.49      = ( ^ [P: individuals > $i > $o,W: $i] :
% 0.20/0.49          ! [X: individuals] : ( P @ X @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----mexists
% 0.20/0.49  thf(mexists_decl,type,
% 0.20/0.49      mexists: ( individuals > $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mexists,definition,
% 0.20/0.49      ( mexists
% 0.20/0.49      = ( ^ [P: individuals > $i > $o,W: $i] :
% 0.20/0.49          ? [X: individuals] : ( P @ X @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Validity of a multi modal logic formula can now be encoded as
% 0.20/0.49  thf(mvalid_decl,type,
% 0.20/0.49      mvalid: ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mvalid,definition,
% 0.20/0.49      ( mvalid
% 0.20/0.49      = ( ^ [P: $i > $o] :
% 0.20/0.49          ! [W: $i] : ( P @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Satisfiability of a multi modal logic formula can now be encoded as
% 0.20/0.49  thf(msatisfiable_decl,type,
% 0.20/0.49      msatisfiable: ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(msatisfiable,definition,
% 0.20/0.49      ( msatisfiable
% 0.20/0.49      = ( ^ [P: $i > $o] :
% 0.20/0.49          ? [W: $i] : ( P @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Countersatisfiability of a multi modal logic formula can now be encoded as
% 0.20/0.49  thf(mcountersatisfiable_decl,type,
% 0.20/0.49      mcountersatisfiable: ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(mcountersatisfiable,definition,
% 0.20/0.49      ( mcountersatisfiable
% 0.20/0.49      = ( ^ [P: $i > $o] :
% 0.20/0.49          ? [W: $i] :
% 0.20/0.49            ~ ( P @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----Invalidity of a multi modal logic formula can now be encoded as
% 0.20/0.49  thf(minvalid_decl,type,
% 0.20/0.49      minvalid: ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(minvalid,definition,
% 0.20/0.49      ( minvalid
% 0.20/0.49      = ( ^ [P: $i > $o] :
% 0.20/0.49          ! [W: $i] :
% 0.20/0.49            ~ ( P @ W ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----Include axioms of ICL logic
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.49  %----The encoding of ICL logic employs only one accessibility relation which
% 0.20/0.49  %----introduce here as a constant 'rel'; we don't need multimodal logic.
% 0.20/0.49  thf(rel_type,type,
% 0.20/0.49      rel: $i > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  %----ICL logic distiguishes between atoms and principals; for this we introduce
% 0.20/0.49  %----a predicate 'icl_atom' ...
% 0.20/0.49  thf(icl_atom_type,type,
% 0.20/0.49      icl_atom: ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_atom,definition,
% 0.20/0.49      ( icl_atom
% 0.20/0.49      = ( ^ [P: $i > $o] : ( mbox @ rel @ P ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %---- ... and also a predicate 'icl_princ'
% 0.20/0.49  thf(icl_princ_type,type,
% 0.20/0.49      icl_princ: ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_princ,definition,
% 0.20/0.49      ( icl_princ
% 0.20/0.49      = ( ^ [P: $i > $o] : P ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----ICL and connective
% 0.20/0.49  thf(icl_and_type,type,
% 0.20/0.49      icl_and: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_and,definition,
% 0.20/0.49      ( icl_and
% 0.20/0.49      = ( ^ [A: $i > $o,B: $i > $o] : ( mand @ A @ B ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----ICL or connective
% 0.20/0.49  thf(icl_or_type,type,
% 0.20/0.49      icl_or: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_or,definition,
% 0.20/0.49      ( icl_or
% 0.20/0.49      = ( ^ [A: $i > $o,B: $i > $o] : ( mor @ A @ B ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----ICL implication connective
% 0.20/0.49  thf(icl_impl_type,type,
% 0.20/0.49      icl_impl: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_impl,definition,
% 0.20/0.49      ( icl_impl
% 0.20/0.49      = ( ^ [A: $i > $o,B: $i > $o] : ( mbox @ rel @ ( mimpl @ A @ B ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----ICL true connective
% 0.20/0.49  thf(icl_true_type,type,
% 0.20/0.49      icl_true: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_true,definition,
% 0.20/0.49      icl_true = mtrue ).
% 0.20/0.49  
% 0.20/0.49  %----ICL false connective
% 0.20/0.49  thf(icl_false_type,type,
% 0.20/0.49      icl_false: $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_false,definition,
% 0.20/0.49      icl_false = mfalse ).
% 0.20/0.49  
% 0.20/0.49  %----ICL says connective
% 0.20/0.49  thf(icl_says_type,type,
% 0.20/0.49      icl_says: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_says,definition,
% 0.20/0.49      ( icl_says
% 0.20/0.49      = ( ^ [A: $i > $o,S: $i > $o] : ( mbox @ rel @ ( mor @ A @ S ) ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %----An ICL formula is K-valid if its translation into modal logic is valid
% 0.20/0.49  thf(iclval_decl_type,type,
% 0.20/0.49      iclval: ( $i > $o ) > $o ).
% 0.20/0.49  
% 0.20/0.49  thf(icl_s4_valid,definition,
% 0.20/0.49      ( iclval
% 0.20/0.49      = ( ^ [X: $i > $o] : ( mvalid @ X ) ) ) ).
% 0.20/0.49  
% 0.20/0.49  %------------------------------------------------------------------------------
% 0.20/0.50  %----Include axioms for ICL notions of validity wrt S4
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  %----We add the reflexivity and the transitivity axiom to obtain S4.
% 0.20/0.50  thf(refl_axiom,axiom,
% 0.20/0.50      ! [A: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ rel @ A ) @ A ) ) ).
% 0.20/0.50  
% 0.20/0.50  thf(trans_axiom,axiom,
% 0.20/0.50      ! [B: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ rel @ B ) @ ( mbox @ rel @ ( mbox @ rel @ B ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  %----We introduce an arbitrary atom s and t
% 0.20/0.50  thf(s,type,
% 0.20/0.50      s: $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(t,type,
% 0.20/0.50      t: $i > $o ).
% 0.20/0.50  
% 0.20/0.50  thf(a,type,
% 0.20/0.50      a: $i > $o ).
% 0.20/0.50  
% 0.20/0.50  %----Can we prove 'cuc'?
% 0.20/0.50  thf(cuc,conjecture,
% 0.20/0.50      iclval @ ( icl_impl @ ( icl_says @ ( icl_princ @ a ) @ ( icl_impl @ ( icl_atom @ s ) @ ( icl_atom @ t ) ) ) @ ( icl_impl @ ( icl_says @ ( icl_princ @ a ) @ ( icl_atom @ s ) ) @ ( icl_says @ ( icl_princ @ a ) @ ( icl_atom @ t ) ) ) ) ).
% 0.20/0.50  
% 0.20/0.50  %------------------------------------------------------------------------------
% 0.20/0.50  ------- convert to smt2 : /export/starexec/sandbox2/tmp/tmp.63F5qzKSnr/cvc5---1.0.5_27869.p...
% 0.20/0.50  (declare-sort $$unsorted 0)
% 0.20/0.50  (declare-fun tptp.current_world () $$unsorted)
% 0.20/0.50  (declare-fun tptp.prop_a ($$unsorted) Bool)
% 0.20/0.50  (declare-fun tptp.prop_b ($$unsorted) Bool)
% 0.20/0.50  (declare-fun tptp.prop_c ($$unsorted) Bool)
% 0.20/0.50  (declare-fun tptp.mfalse ($$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mfalse (lambda ((X $$unsorted)) false)))
% 0.20/0.50  (declare-fun tptp.mtrue ($$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mtrue (lambda ((X $$unsorted)) true)))
% 0.20/0.50  (declare-fun tptp.mnot ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mnot (lambda ((X (-> $$unsorted Bool)) (U $$unsorted)) (not (@ X U)))))
% 0.20/0.50  (declare-fun tptp.mor ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mor (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (@ X U) (@ Y U)))))
% 0.20/0.50  (declare-fun tptp.mand ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mand (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (@ Y U)))))
% 0.20/0.50  (declare-fun tptp.mimpl ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mimpl (lambda ((U (-> $$unsorted Bool)) (V (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot U)) V) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.miff ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.miff (lambda ((U (-> $$unsorted Bool)) (V (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand (@ (@ tptp.mimpl U) V)) (@ (@ tptp.mimpl V) U)) __flatten_var_0))))
% 0.20/0.50  (declare-fun tptp.mbox ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mbox (lambda ((R (-> $$unsorted $$unsorted Bool)) (P (-> $$unsorted Bool)) (X $$unsorted)) (forall ((Y $$unsorted)) (=> (@ (@ R X) Y) (@ P Y))))))
% 0.20/0.50  (declare-fun tptp.mdia ((-> $$unsorted $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mdia (lambda ((R (-> $$unsorted $$unsorted Bool)) (P (-> $$unsorted Bool)) (X $$unsorted)) (exists ((Y $$unsorted)) (and (@ (@ R X) Y) (@ P Y))))))
% 0.20/0.50  (declare-sort tptp.individuals 0)
% 0.20/0.50  (declare-fun tptp.mall ((-> tptp.individuals $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mall (lambda ((P (-> tptp.individuals $$unsorted Bool)) (W $$unsorted)) (forall ((X tptp.individuals)) (@ (@ P X) W)))))
% 0.20/0.50  (declare-fun tptp.mexists ((-> tptp.individuals $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.50  (assert (= tptp.mexists (lambda ((P (-> tptp.individuals $$unsorted Bool)) (W $$unsorted)) (exists ((X tptp.individuals)) (@ (@ P X) W)))))
% 0.20/0.50  (declare-fun tptp.mvalid ((-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.mvalid (lambda ((P (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ P W)))))
% 0.20/0.50  (declare-fun tptp.msatisfiable ((-> $$unsorted Bool)) Bool)
% 0.20/0.50  (assert (= tptp.msatisfiable (lambda ((P (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ P W)))))
% 0.20/0.50  (declare-fun tptp.mcountersatisfiable ((-> $$unsorted Bool)) Bool)
% 0.20/0.54  (assert (= tptp.mcountersatisfiable (lambda ((P (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ P W))))))
% 0.20/0.54  (declare-fun tptp.minvalid ((-> $$unsorted Bool)) Bool)
% 0.20/0.54  (assert (= tptp.minvalid (lambda ((P (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ P W))))))
% 0.20/0.54  (declare-fun tptp.rel ($$unsorted $$unsorted) Bool)
% 0.20/0.54  (declare-fun tptp.icl_atom ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.icl_atom (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) P) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.icl_princ ((-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.icl_princ (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ P __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.icl_and ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.icl_and (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand A) B) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.icl_or ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.icl_or (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor A) B) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.icl_impl ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.icl_impl (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) (@ (@ tptp.mimpl A) B)) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.icl_true ($$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.icl_true tptp.mtrue))
% 0.20/0.54  (declare-fun tptp.icl_false ($$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.icl_false tptp.mfalse))
% 0.20/0.54  (declare-fun tptp.icl_says ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 0.20/0.54  (assert (= tptp.icl_says (lambda ((A (-> $$unsorted Bool)) (S (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) (@ (@ tptp.mor A) S)) __flatten_var_0))))
% 0.20/0.54  (declare-fun tptp.iclval ((-> $$unsorted Bool)) Bool)
% 0.20/0.54  (assert (= tptp.iclval (lambda ((X (-> $$unsorted Bool))) (@ tptp.mvalid X))))
% 0.20/0.54  (assert (forall ((A (-> $$unsorted Bool))) (@ tptp.mvalid (@ (@ tptp.mimpl (@ (@ tptp.mbox tptp.rel) A)) A))))
% 0.20/0.54  (assert (forall ((B (-> $$unsorted Bool))) (let ((_let_1 (@ tptp.mbox tptp.rel))) (let ((_let_2 (@ _let_1 B))) (@ tptp.mvalid (@ (@ tptp.mimpl _let_2) (@ _let_1 _let_2)))))))
% 0.20/0.54  (declare-fun tptp.s ($$unsorted) Bool)
% 0.20/0.54  (declare-fun tptp.t ($$unsorted) Bool)
% 0.20/0.54  (declare-fun tptp.a ($$unsorted) Bool)
% 0.20/0.54  (assert (let ((_let_1 (@ tptp.icl_atom tptp.t))) (let ((_let_2 (@ tptp.icl_says (@ tptp.icl_princ tptp.a)))) (let ((_let_3 (@ tptp.icl_atom tptp.s))) (not (@ tptp.iclval (@ (@ tptp.icl_impl (@ _let_2 (@ (@ tptp.icl_impl _let_3) _let_1))) (@ (@ tptp.icl_impl (@ _let_2 _let_3)) (@ _let_2 _let_1)))))))))
% 0.20/0.54  (set-info :filename cvc5---1.0.5_27869)
% 0.20/0.54  (check-sat-assuming ( true ))
% 0.20/0.54  ------- get file name : TPTP file name is SWV426^2
% 0.20/0.54  ------- cvc5-thf : /export/starexec/sandbox2/solver/bin/cvc5---1.0.5_27869.smt2...
% 0.20/0.54  --- Run --ho-elim --full-saturate-quant at 10...
% 0.20/0.54  % SZS status Theorem for SWV426^2
% 0.20/0.54  % SZS output start Proof for SWV426^2
% 0.20/0.54  (
% 0.20/0.54  (let ((_let_1 (@ tptp.icl_atom tptp.t))) (let ((_let_2 (@ tptp.icl_says (@ tptp.icl_princ tptp.a)))) (let ((_let_3 (@ tptp.icl_atom tptp.s))) (let ((_let_4 (not (@ tptp.iclval (@ (@ tptp.icl_impl (@ _let_2 (@ (@ tptp.icl_impl _let_3) _let_1))) (@ (@ tptp.icl_impl (@ _let_2 _let_3)) (@ _let_2 _let_1))))))) (let ((_let_5 (= tptp.iclval (lambda ((X (-> $$unsorted Bool))) (@ tptp.mvalid X))))) (let ((_let_6 (= tptp.icl_says (lambda ((A (-> $$unsorted Bool)) (S (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) (@ (@ tptp.mor A) S)) __flatten_var_0))))) (let ((_let_7 (= tptp.icl_false tptp.mfalse))) (let ((_let_8 (= tptp.icl_true tptp.mtrue))) (let ((_let_9 (= tptp.icl_impl (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) (@ (@ tptp.mimpl A) B)) __flatten_var_0))))) (let ((_let_10 (= tptp.icl_or (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor A) B) __flatten_var_0))))) (let ((_let_11 (= tptp.icl_and (lambda ((A (-> $$unsorted Bool)) (B (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand A) B) __flatten_var_0))))) (let ((_let_12 (= tptp.icl_princ (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ P __flatten_var_0))))) (let ((_let_13 (= tptp.icl_atom (lambda ((P (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mbox tptp.rel) P) __flatten_var_0))))) (let ((_let_14 (= tptp.minvalid (lambda ((P (-> $$unsorted Bool))) (forall ((W $$unsorted)) (not (@ P W))))))) (let ((_let_15 (= tptp.mcountersatisfiable (lambda ((P (-> $$unsorted Bool))) (exists ((W $$unsorted)) (not (@ P W))))))) (let ((_let_16 (= tptp.msatisfiable (lambda ((P (-> $$unsorted Bool))) (exists ((W $$unsorted)) (@ P W)))))) (let ((_let_17 (= tptp.mvalid (lambda ((P (-> $$unsorted Bool))) (forall ((W $$unsorted)) (@ P W)))))) (let ((_let_18 (= tptp.mexists (lambda ((P (-> tptp.individuals $$unsorted Bool)) (W $$unsorted)) (exists ((X tptp.individuals)) (@ (@ P X) W)))))) (let ((_let_19 (= tptp.mall (lambda ((P (-> tptp.individuals $$unsorted Bool)) (W $$unsorted)) (forall ((X tptp.individuals)) (@ (@ P X) W)))))) (let ((_let_20 (= tptp.mdia (lambda ((R (-> $$unsorted $$unsorted Bool)) (P (-> $$unsorted Bool)) (X $$unsorted)) (exists ((Y $$unsorted)) (and (@ (@ R X) Y) (@ P Y))))))) (let ((_let_21 (= tptp.mbox (lambda ((R (-> $$unsorted $$unsorted Bool)) (P (-> $$unsorted Bool)) (X $$unsorted)) (forall ((Y $$unsorted)) (=> (@ (@ R X) Y) (@ P Y))))))) (let ((_let_22 (= tptp.miff (lambda ((U (-> $$unsorted Bool)) (V (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mand (@ (@ tptp.mimpl U) V)) (@ (@ tptp.mimpl V) U)) __flatten_var_0))))) (let ((_let_23 (= tptp.mimpl (lambda ((U (-> $$unsorted Bool)) (V (-> $$unsorted Bool)) (__flatten_var_0 $$unsorted)) (@ (@ (@ tptp.mor (@ tptp.mnot U)) V) __flatten_var_0))))) (let ((_let_24 (= tptp.mand (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (and (@ X U) (@ Y U)))))) (let ((_let_25 (= tptp.mor (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (@ X U) (@ Y U)))))) (let ((_let_26 (= tptp.mnot (lambda ((X (-> $$unsorted Bool)) (U $$unsorted)) (not (@ X U)))))) (let ((_let_27 (= tptp.mtrue (lambda ((X $$unsorted)) true)))) (let ((_let_28 (= tptp.mfalse (lambda ((X $$unsorted)) false)))) (let ((_let_29 (forall ((BOUND_VARIABLE_1584 $$unsorted)) (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1584) BOUND_VARIABLE_1584))))) (let ((_let_30 (forall ((BOUND_VARIABLE_1423 $$unsorted)) (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1423) BOUND_VARIABLE_1423))))) (let ((_let_31 (forall ((BOUND_VARIABLE_1363 $$unsorted)) (or (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1363) BOUND_VARIABLE_1363)) (ho_2 k_7 BOUND_VARIABLE_1363))))) (let ((_let_32 (forall ((BOUND_VARIABLE_1394 $$unsorted)) (or (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1394) BOUND_VARIABLE_1394)) (ho_2 k_6 BOUND_VARIABLE_1394))))) (let ((_let_33 (forall ((BOUND_VARIABLE_1457 $$unsorted)) (or (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1457) BOUND_VARIABLE_1457)) (ho_2 k_5 BOUND_VARIABLE_1457))))) (let ((_let_34 (forall ((BOUND_VARIABLE_1478 $$unsorted)) (or (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1478) BOUND_VARIABLE_1478)) (ho_2 k_7 BOUND_VARIABLE_1478))))) (let ((_let_35 (forall ((BOUND_VARIABLE_1505 $$unsorted)) (or (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1505) BOUND_VARIABLE_1505)) (ho_2 k_5 BOUND_VARIABLE_1505))))) (let ((_let_36 (not _let_35))) (let ((_let_37 (forall ((BOUND_VARIABLE_1553 $$unsorted)) (or (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1553) BOUND_VARIABLE_1553)) (ho_2 k_5 BOUND_VARIABLE_1553))))) (let ((_let_38 (not _let_33))) (let ((_let_39 (forall ((BOUND_VARIABLE_1526 $$unsorted)) (or (not (ho_2 (ho_4 k_3 BOUND_VARIABLE_1526) BOUND_VARIABLE_1526)) (ho_2 k_6 BOUND_VARIABLE_1526))))) (let ((_let_40 (not _let_34))) (let ((_let_41 (not _let_30))) (let ((_let_42 (not _let_32))) (let ((_let_43 (EQ_RESOLVE (ASSUME :args (_let_28)) (MACRO_SR_EQ_INTRO :args (_let_28 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_44 (EQ_RESOLVE (ASSUME :args (_let_27)) (MACRO_SR_EQ_INTRO :args (_let_27 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_45 (ASSUME :args (_let_26)))) (let ((_let_46 (ASSUME :args (_let_25)))) (let ((_let_47 (ASSUME :args (_let_24)))) (let ((_let_48 (EQ_RESOLVE (ASSUME :args (_let_23)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_47 _let_46 _let_45 _let_44 _let_43) :args (_let_23 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_49 (EQ_RESOLVE (ASSUME :args (_let_22)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_48 _let_47 _let_46 _let_45 _let_44 _let_43) :args (_let_22 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_50 (EQ_RESOLVE (ASSUME :args (_let_21)) (MACRO_SR_EQ_INTRO :args (_let_21 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_51 (EQ_RESOLVE (ASSUME :args (_let_20)) (MACRO_SR_EQ_INTRO :args (_let_20 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_52 (ASSUME :args (_let_19)))) (let ((_let_53 (EQ_RESOLVE (ASSUME :args (_let_18)) (MACRO_SR_EQ_INTRO :args (_let_18 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_54 (ASSUME :args (_let_17)))) (let ((_let_55 (EQ_RESOLVE (ASSUME :args (_let_16)) (MACRO_SR_EQ_INTRO :args (_let_16 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_56 (EQ_RESOLVE (ASSUME :args (_let_15)) (MACRO_SR_EQ_INTRO :args (_let_15 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_57 (ASSUME :args (_let_14)))) (let ((_let_58 (EQ_RESOLVE (ASSUME :args (_let_13)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43) :args (_let_13 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_59 (ASSUME :args (_let_12)))) (let ((_let_60 (EQ_RESOLVE (ASSUME :args (_let_11)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43) :args (_let_11 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_61 (EQ_RESOLVE (ASSUME :args (_let_10)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43) :args (_let_10 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_62 (EQ_RESOLVE (ASSUME :args (_let_9)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43) :args (_let_9 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_63 (EQ_RESOLVE (SYMM (ASSUME :args (_let_8))) (MACRO_SR_EQ_INTRO (AND_INTRO _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43) :args ((= tptp.mtrue tptp.icl_true) SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_64 (EQ_RESOLVE (SYMM (ASSUME :args (_let_7))) (MACRO_SR_EQ_INTRO (AND_INTRO _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43) :args ((= tptp.mfalse tptp.icl_false) SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_65 (EQ_RESOLVE (ASSUME :args (_let_6)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43) :args (_let_6 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_66 (EQ_RESOLVE (ASSUME :args (_let_4)) (TRANS (MACRO_SR_EQ_INTRO (AND_INTRO (EQ_RESOLVE (ASSUME :args (_let_5)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_65 _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43) :args (_let_5 SB_DEFAULT SBA_FIXPOINT))) _let_65 _let_64 _let_63 _let_62 _let_61 _let_60 _let_59 _let_58 _let_57 _let_56 _let_55 _let_54 _let_53 _let_52 _let_51 _let_50 _let_49 _let_48 _let_47 _let_46 _let_45 _let_44 _let_43) :args (_let_4 SB_DEFAULT SBA_FIXPOINT)) (PREPROCESS :args ((= (not (or (and (forall ((BOUND_VARIABLE_1363 $$unsorted)) (or (not (@ (@ tptp.rel BOUND_VARIABLE_1363) BOUND_VARIABLE_1363)) (@ tptp.s BOUND_VARIABLE_1363))) (not (forall ((BOUND_VARIABLE_1394 $$unsorted)) (or (not (@ (@ tptp.rel BOUND_VARIABLE_1394) BOUND_VARIABLE_1394)) (@ tptp.t BOUND_VARIABLE_1394)))) (not (forall ((BOUND_VARIABLE_1423 $$unsorted)) (not (@ (@ tptp.rel BOUND_VARIABLE_1423) BOUND_VARIABLE_1423)))) (not (forall ((BOUND_VARIABLE_1457 $$unsorted)) (or (not (@ (@ tptp.rel BOUND_VARIABLE_1457) BOUND_VARIABLE_1457)) (@ tptp.a BOUND_VARIABLE_1457))))) (and (not (forall ((BOUND_VARIABLE_1478 $$unsorted)) (or (not (@ (@ tptp.rel BOUND_VARIABLE_1478) BOUND_VARIABLE_1478)) (@ tptp.s BOUND_VARIABLE_1478)))) (not (forall ((BOUND_VARIABLE_1505 $$unsorted)) (or (not (@ (@ tptp.rel BOUND_VARIABLE_1505) BOUND_VARIABLE_1505)) (@ tptp.a BOUND_VARIABLE_1505))))) (forall ((BOUND_VARIABLE_1526 $$unsorted)) (or (not (@ (@ tptp.rel BOUND_VARIABLE_1526) BOUND_VARIABLE_1526)) (@ tptp.t BOUND_VARIABLE_1526))) (forall ((BOUND_VARIABLE_1553 $$unsorted)) (or (not (@ (@ tptp.rel BOUND_VARIABLE_1553) BOUND_VARIABLE_1553)) (@ tptp.a BOUND_VARIABLE_1553))) (forall ((BOUND_VARIABLE_1584 $$unsorted)) (not (@ (@ tptp.rel BOUND_VARIABLE_1584) BOUND_VARIABLE_1584))) (forall ((W $$unsorted) (Y $$unsorted)) (not (@ (@ tptp.rel W) Y))))) (not (or (and _let_31 _let_42 _let_41 _let_38) (and _let_40 _let_36) _let_39 _let_37 _let_29 (forall ((W $$unsorted) (Y $$unsorted)) (not (ho_2 (ho_4 k_3 W) Y)))))))))))) (let ((_let_67 (MACRO_RESOLUTION_TRUST (EQUIV_ELIM2 (SYMM (ALPHA_EQUIV :args (_let_33 (= BOUND_VARIABLE_1457 BOUND_VARIABLE_1553))))) (NOT_OR_ELIM _let_66 :args (3)) :args (_let_38 true _let_37)))) (let ((_let_68 (or))) (let ((_let_69 (not _let_31))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (NOT_OR_ELIM _let_66 :args (4)) (MACRO_RESOLUTION_TRUST (EQUIV_ELIM2 (SYMM (ALPHA_EQUIV :args (_let_30 (= BOUND_VARIABLE_1423 BOUND_VARIABLE_1584))))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (NOT_AND (NOT_OR_ELIM _let_66 :args (0))) (CONG (REFL :args (_let_69)) (MACRO_SR_PRED_INTRO :args ((= (not _let_42) _let_32))) (MACRO_SR_PRED_INTRO :args ((= (not _let_41) _let_30))) (MACRO_SR_PRED_INTRO :args ((= (not _let_38) _let_33))) :args _let_68)) :args ((or _let_33 _let_30 _let_32 _let_69))) _let_67 (MACRO_RESOLUTION_TRUST (EQUIV_ELIM2 (SYMM (ALPHA_EQUIV :args (_let_32 (= BOUND_VARIABLE_1394 BOUND_VARIABLE_1526))))) (NOT_OR_ELIM _let_66 :args (2)) :args (_let_42 true _let_39)) (MACRO_RESOLUTION_TRUST (EQUIV_ELIM1 (SYMM (ALPHA_EQUIV :args (_let_31 (= BOUND_VARIABLE_1363 BOUND_VARIABLE_1478))))) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (NOT_AND (NOT_OR_ELIM _let_66 :args (1))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_40) _let_34))) (MACRO_SR_PRED_INTRO :args ((= (not _let_36) _let_35))) :args _let_68)) :args ((or _let_35 _let_34))) (MACRO_RESOLUTION_TRUST (EQUIV_ELIM1 (SYMM (ALPHA_EQUIV :args (_let_33 (= BOUND_VARIABLE_1457 BOUND_VARIABLE_1505))))) _let_67 :args (_let_36 true _let_33)) :args (_let_34 true _let_35)) :args (_let_31 false _let_34)) :args (_let_30 true _let_33 true _let_32 false _let_31)) :args (_let_29 false _let_30)) :args (false false _let_29)) :args (_let_28 _let_27 _let_26 _let_25 _let_24 _let_23 _let_22 _let_21 _let_20 _let_19 _let_18 _let_17 _let_16 _let_15 _let_14 _let_13 _let_12 _let_11 _let_10 _let_9 _let_8 _let_7 _let_6 _let_5 (forall ((A (-> $$unsorted Bool))) (@ tptp.mvalid (@ (@ tptp.mimpl (@ (@ tptp.mbox tptp.rel) A)) A))) (forall ((B (-> $$unsorted Bool))) (let ((_let_1 (@ tptp.mbox tptp.rel))) (let ((_let_2 (@ _let_1 B))) (@ tptp.mvalid (@ (@ tptp.mimpl _let_2) (@ _let_1 _let_2)))))) _let_4 true))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
% 0.20/0.54  )
% 0.20/0.54  % SZS output end Proof for SWV426^2
% 0.20/0.54  % cvc5---1.0.5 exiting
% 0.20/0.55  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------